High Performance Computers (DANEEL)
The research group is equipped with an independent Daneel cluster, with nearly 80+ CPU computing nodes, and independent nodes such as independent GPU and large memory. Most nodes are connected by InfiniBand (IB) high-speed network to support parallel computing across nodes. The system has built the Lustre high-performance cluster parallel file system, the SLURM job management system and the LMOD environment module management system. Moreover, the research group has long purchased computer machines from the Big Data Computing Center of Southeast University, National Supercomputing Center in Tianjin, and Jiangsu Zhonghe Cloud Computing to fully meet the computing needs of the research group.
Partition | Count | Arch | Cores | RAM | Limitation | Nodes |
debug | 2 | E5 2680v4 | 28 Core | 64 Gb | 12 Hours | node[09-10] |
GPU | 1 | RTX 2080Ti × 2 | 32 Core | 192 Gb | 100 Days | s05 |
C2680 | 8 | E5 2680v4 | 28 Core | 64 Gb | 100 Days | node[01-08] |
C6132 | 10 | Gold 6132 | 28 Core | 192 Gb | 100 Days | node[11-18] s[01-02] |
C6240 | 10 | Gold 6240 | 36 Core | 192 Gb | 100 Days | node[19-26] s[03-04] |
C6240R | 8 | Gold 6240R | 48 Core | 192 Gb | 100 Days | node[27-34] |
wang | 6 | Gold 6248R | 48 Core | 192 Gb | 100 Days | s[06-11] |
C6326JU | 11 | Gold 6326 | 32 Core | 256 Gb | 100 Days | node[35-45] |
C6326LI | 10 | Gold 6326 | 32 Core | 256 Gb | 100 Days | node[46-55] |
Commonly Used Applications:
Density Functional Theory | ||
Application | Versions | Default |
berkeleygw | 1.2, 2.1, 3.0.1 | 3.0.1 |
cp2k | 6.1, 7.1, 8.2, 9.1 | 7.1 |
elk | 6.8.4, 7.2.42, 8.4.6 | 8.4.6 |
gpaw | 22.1.0 | 22.1.0 |
gromacs | 2020.7, 2021.6, 2022.2 | 2022.2 |
jdftx | 1.7.0 | 1.7.0 |
lammps | 20.12.24, 21.09.29, 22.03.24 | 22.03.24 |
nwchem | 6.8.1, 7.0.2 | 7.0.2 |
orca | 3.0.3, 4.2.1, 5.0.3 | 5.0.3 |
qe | 6.5, 6.8, 7.0, 7.1 | 7.1 |
siesta | 3.2, 4.0.2, 4.1.5 | 4.0.2 |
vasp | 5.4.1, 5.4.4, 5.4.4_mods, 6.1.2, 6.1.2_omp, 6.2.0, 6.2.0_omp, 6.3.0, 6.3.0_omp | 6.3.0 |
yambo | 4.5.3, 5.0.4, 5.1.0 | 5.1.0 |
Machine Learning Libraries | ||
Application | Versions | Default |
jax | 0.1.56, 0.3.10 | 0.3.10 |
keras | 2.8.0, 2.9.0 | 2.9.0 |
pytorch | 1.5.0, 1.11.0 | 1.11.0 |
tensorflow | 2.1.0, 2.8.0, 2.8.1, 2.9.0 | 2.9.0 |
xgboost | 1.6.0, 1.6.1 | 1.6.1 |
Analysis Tools | ||
Application | Versions | Default |
gdb | 9.2, 10.2, 11.2 | 11.2 |
gnuplot | 5.4.3 | 5.4.3 |
lobster | 4.0.0, 4.1.0 | 4.1.0 |
phonopy | 2.14.0 | 2.14.0 |
sisso | 2.4, 3.1 | 3.1 |
swig | 3.0.12, 4.0.2 | 4.0.2 |
vaspkit | 1.1.2, 1.2.5, 1.3.4 | 1.3.4 |
vtstscripts | 978 | 978 |
wannier90 | 1.2, 2.1.0, 3.1.0 | 3.1.0 |
wanniertools | 2.2.9, 2.5.1 | 2.5.1 |
Other Applications:
Program Environment | ||
Application | Versions | Default |
StdEnv | intelhpc-2022.2 | intelhpc-2022.2 |
Utilities | ||
Application | Versions | Default |
autoconf | 2.71 | 2.71 |
automake | 1.16.5 | 1.16.5 |
gmake | 4.3 | 4.3 |
binutils | 2.38 | 2.38 |
cmake | 3.16.9, 3.18.6, 3.20.6, 3.22.4 | 3.22.4 |
libtool | 2.4.6 | 2.4.6 |
ninja | 1.6.0, 1.8.2, 1.10.2 | 1.10.2 |
singularity | 3.7.4, 3.9.9 | 3.9.9 |
texinfo | 6.8 | 6.8 |
Languages | ||
Application | Versions | Default |
go | 1.16.15, 1.17.9, 1.18.1 | 1.18.1 |
java | 14.0.2, 15.0.2, 16.0.2, 17.0.2 | 17.0.2 |
julia | 1.5.4, 1.6.6, 1.7.2 | 1.7.2 |
python | py27-2019.10, py37-2019.10, py38-2020.11, py39-2021.11 | py39-2021.11 |
rust | 1.38.0, 1.48.0, 1.58.0, 1.60.0 | 1.60.0 |
Toolchains | ||
Application | Versions | Default |
gcc | 4.8.5, 5.5.0, 6.5.0, 7.5.0, 8.5.0, 9.5.0, 10.3.0, 11.2.0, 12.1.0 | 12.1.0 |
intel | 2017u8, 2018u4, 2019u5, 2020u4, 2021.4, 2022.2 | 2022.2 |
llvm | 12.0.1, 13.0.1, 14.0.4 | 14.0.4 |
musl | 1.2.0 | 1.2.0 |
intelmpi | 2017u8, 2018u4, 2019u5, 2020u4, 2021.4, 2022.2 | 2022.2 |
openmpi | 1.6.5-gcc, 1.6.5-intel, 2.1.6-gcc, 2.1.6-intel, 3.1.4-gcc, 3.1.4-intel, 4.1.1-gcc, 4.1.1-intel | 4.1.1-intel |
mpich | 3.4.3-gcc, 3.4.3-intel, 4.0.2-gcc, 4.0.2-intel | 4.0.2-intel |
Libraries | ||
Application | Versions | Default |
boost | 1.67.0_py39 | 1.67.0_py39 |
dftd4 | 2.5.0 | 2.5.0 |
eigen | 3.4.0 | 3.4.0 |
elpa | 2016.05.004, 2017.05.002, 2017.11.001, 2018.05.001, 2020.05.001, 2021.05.002, 2016.05.004_omp, 2017.05.002_omp, 2017.11.001_omp, 2018.05.001_omp, 2020.05.001_omp, 2021.05.002_omp | 2016.05.004 |
fftw | 3.3.10, 3.3.10_mpi | 3.3.10_mpi |
flook | 0.8.1 | 0.8.1 |
gsl | 2.7.1 | 2.7.1 |
hdf5 | 1.10.8, 1.12.2 | 1.12.2 |
intelmkl | 2017u8, 2018u4, 2019u5, 2020u4, 2021.4, 2022.2 | 2022.2 |
libbeef | 0.1.3 | 0.1.3 |
libint | 1.1.5, 2.6.0 | 2.6.0 |
libvdwxc | 0.3.2, 0.4.0 | 0.4.0 |
libxc | 4.3.4, 5.2.2 | 5.2.2 |
libxsmm | 1.17 | 1.17 |
metis | 5.1.0 | 5.1.0 |
netcdf-c | 4.8.1 | 4.8.1 |
netcdf-cxx | 4.3.1 | 4.3.1 |
netcdf-fortran | 4.5.4 | 4.5.4 |
parmetis | 4.0.3 | 4.0.3 |
pexsi | 0.9.2, 0.10.2 | 0.10.2 |
plumed | 2.8.0 | 2.8.0 |
pnetcdf | 1.12.3 | 1.12.3 |
sirius | 6.5.7, 7.3.1 | 6.5.7 |
spfft | 0.9.13, 0.9.13_omp, 1.0.6, 1.0.6_omp | 1.0.6 |
spglib | 1.16.3 | 1.16.3 |
spla | 1.5.4_omp | 1.5.4_omp |
superlu_dist | 4.3, 5.2.2, 5.4.0 | 5.2.2 |